You are here

Are droughts helping increase the resilience of Colorado water?

Written by Amber Childress-Runyon, 2015-2016 Sustainability Leadership Fellow and PhD Student in the Department of Ecosystem Science and Sustainability.

Recent “mega droughts” in the U.S.[1] and globally[2], have given rise to a number of articles and studies (like this from the Guardian[3]) warning that freshwater shortages will cause the next major global crisis.   The cause of the problem is not a mystery and has been connected to two main drivers. The global population is growing exponentially, but global water use has been growing at twice the rate of population growth[4]. Meanwhile, the future availability and distribution of water is likely to change due to increased temperatures and more extreme weather events[5].


Severe regional droughts often exacerbate existing water shortage issues. When a water system is already stressed, it takes less to push it beyond what is manageable. The ability of a water system to deal with and recover from a drought is called resilience. Resilience is often used as a buzzword that is synonymous from recovery, but understanding the degree of resilience a system has can help water managers ensure that they are adequately prepared to respond to water shortages.

Colorado serves as a perfect case study to evaluate water shortage issues from a regional water management perspective. Droughts are not uncommon to Colorado, an arid state that typically has at least one region experiencing drought in any given month[6]. Meanwhile, demographers predict that the population will double in the next forty years, resulting in increased water usage – a driver of water shortage.[7]This combination of rapid growth and drought-prone climate means that Colorado has all of the ingredients for a future major water crisis, similar to those discussed above. However, water managers in the state have learned some lessons from recent droughts (2002 and again in 2012) that could make it more resilient to future disasters. 

The drought of 2002 built up from the winter of 1999 and did not completely dissipate until 2006. The combination of below average snow combined with low rainfall in the preceding years and through the spring of 2002 led to extremely low surface flow, causing severe water shortages.[8][9]  Reservoir storage and river runoff were at a record low level, with flows less than 5% of normal in June 2002 when drought was declared.[10] A decade later, severe drought struck the region again. The 2012-2013 drought was similar in magnitude to conditions in 20026 and caused heavy economic, social, and environmental impacts throughout the region. It was rated by some as the worst in the U.S. since the 1930s.[11] Reports of the impacts on both droughts concluded that, because the droughts only (officially) lasted a single year, the impacts were manageable, albeit severe. Had the droughts lasted for multiple years, the results would have been catastrophic (like we have seen in California).

Although it has been a couple of years since the state had a significant drought, it is still learning lessons from recent water shortages. In the wake of these severe droughts, the State of Colorado began taking more proactive measures to manage future water supplies. The quick onset of both droughts demonstrated the need to increase flexibility of water management options and allow for solutions to be developed and implemented locally, a core theme in all of the planning since the 2002 drought. The Colorado Water Conservation Board (CWCB) developed a Drought & Water Supply Assessment to “developed to plan, develop, and implement an assessment to engage Colorado water users.”[12] Since then, the CWCB, among other state and local agencies, have worked to engage stakeholders through basin roundtables, updated drought response plans, and most recently completed a multi-year, ground-up process to write a statewide Water Plan[13] that outlines the vision for Colorado water.  

Will these efforts help prevent Colorado from experiencing some of the catastrophic damages seen in the multi-year droughts in California and elsewhere? Only time will tell.  However, prevailing resilience theories about how humans and the environment interact and respond to disturbances suggest that systems go through cycles of change. When a system is hit by a disturbance (like a drought), if it does not collapse, it reorganizes itself (like developing more robust drought monitoring and planning, or shifting drought management to become stakeholder-driven). This results in a changed but more resilient system. According to this theory, each disturbance causes the system to be a little more robust. In this way, resilience can be thought of sort of like getting a flu vaccine. Your body builds up a resistance to the type of virus you’ve been vaccinated for, but also has an increased immunity for similar forms of flu, even if they were not the same strand as the vaccine. So with droughts, going through a number of smaller disturbances results in a higher resilience to bigger disturbances.[14]

If this theory holds true, the droughts of the 2000s may have increased the resilience of the water community. A recent study by the CWCB6 surveyed water utilities to compare the perceived impacts of the 2002 and 2013 droughts. The majority of respondents in the South Platte River Basin indicated that “they feel they were less susceptible to drought impacts in 2013 than in 2002, although conditions in 2002 and 2013 were similar,” suggesting that actions taken as a result of 2002 increased the resilience of many water utilities.  

As state and local water managers try and prepare for the next major drought, it will be helpful to know the extent to which water utilities were impacted differently and to investigate what policy changes or other factors led to increased resilience in the 2013 drought.





[5] IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyers (eds.)]. IPCC, Geneva, Switzerland, 151 pp. in IPCC AR5 Synthesis Report website.

[6] Colorado Water Conservation Board. (2013). Colorado Drought Mitigation and Response Plan.


[8] Davitt, A. (2011). Climate Variability and Drought in the South Platte River Basin. City College of the City University of New York.

[9] Doesken, N. J., & Pielke, R. A. (2008). The Drought of 2002 in Colorado. Retrieved from

[10] Schuck, E., & Frasier, M. (2004). Coping with Natural and Institutional Drought. Current Agriculture, Food & Resource Issue, 5, 119–130.

[11] Grigg, N. S. (2014). The 2011–2012 drought in the United States: new lessons from a record event. International Journal of Water Resources Development, 30(2), 183–199. doi:10.1080/07900627.2013.847710

[12] Colorado Water Conservation Board. (2004). Colorado Drought and Water Supply Assessment. Retrieved from


[14] Pielke, R. A. (2013). Climate Vulnerability: Understanding and Addressing Threats to Essential Resources


Add new comment

User login

Featured Contributor

Climbers & Bats GCRT

This research team creates a working group of rock climbing interest groups, CSU biologists and human dimension specialists, and CSU students to strategically collect information on bat roost locations and share bat conservation information with the climbing community. View details of their GCRT here and their blog entry here.

Recent Comments

Join the Conversation